Tag Archives: air

The Importance of Choosing Good Quality Dental Compressor

When you’re using a poor-quality dental air compressor system that delivers either dirty air or an air compressor that delivers air at a lower pressure than required, you’ll see low-quality or even no operation of these devices. If air pressure is good, but the air itself is unclean, then you’re risking internal damage to those units, reducing their overall lifespan.

The biggest concern is moist air that can harm delicate internal machinery and quickly make your tools unusable. Moisture can lead to corrosion, microorganism contamination and decrease the precision of your tools. For those who select a low-quality air compressor, a common issue is carbon buildup that poses an even greater danger to the machinery in handpieces.

Electric dental handpieces also tend to have a greater cost and a higher number of parts that you’ll need to maintain, while air-driven pieces can be obtained in full, often for less than $1,000. Air-driven handpieces also tend to be lighter and easier to handle, with the latest innovations providing greater torque so you can use them for many applications over a longer period of time.

Oil-lubricated air compressors tend to be quieter and can last longer than other models, making them seem like a top choice for a dental office, but that may not be the case.

The main reason many dentists choose an oil-free compressor is because they have a lower risk of contaminating the compressed air with lubricant. These units also tend to be lighter, allowing them to be placed in a wider range of areas, while still creating as much air flow and pressure as many oil-lubricated models.

Removing the risk of contaminating the air is the biggest win and makes the most sense because it can protect the health and safety of your patients, staff and those in your office waiting areas. While you will need to perform maintenance slightly more often, the health and safety concerns significantly outweigh any benefit you’d see from using the heavier, lubricated models.

HOW TO MAINTAIN DENTAL AIR COMPRESSORS Correctly

An air compressor is capable of working under all types of weather, providing that the compressor is kept in optimal shape and the operating environment is suited to the technology. With periodic maintenance of your compressed air system and its room of operation, you could enjoy optimal performance throughout the year with minimal downtime. Therefore, it’s wise to mark each of the following steps onto select seasonal dates of your working calendar.

The temperature that surrounds a dental air compressor is integral to the quality of the machine’s performance. If the air that surrounds the compressor is hotter than normal due to rising outdoor temperatures, it can affect the performance of pneumatic tools and machines. Therefore, it’s crucial to ensure that the air compressor itself maintains consistent temperatures throughout the year, including those months where outdoor temperatures top 80 degrees.

In order to prevent an air compressor from getting hotter during summer, the coolers must be cleaned each year just as temperatures begin to rise. If the coolers are clogged, it could impede their ability to keep your compressed air system at desired levels. To prevent this from happening, perform the following actions several weeks in advance of each summer: Inspect the coolers for traces of dirt, gunk or misty residue. Clean away any dirt deposits present on the coolers.

If the air compressor gets overheated, the impact could be troublesome for the compressor itself, as well as for any attached pneumatic tools and machinery. If a compressor is used to power air blowers, for example, the quality of air that reaches the end point could be ill–suited to the task at hand when the system is overheated.

The filtration system is integral to the efficiency of an air compressor. As long as the air and oil are sufficiently filtered throughout a given cycle, the air compressor can be expected to produce cool air at consistent volumes with an overall smooth performance from the machine. However, if the filters are clogged with dirt, pressure drop can ensue, and this forces the air compressor to work harder just to perform basic functions. Consequently, energy gets consumed and parts get worn in the process.

Maintenance of an air compressor unit is only part of what keeps a compressed air system in optimal condition throughout the four seasons of a given year. In order to keep a well–functioning compressor performing up to par, you also need to ensure that the compressor room is maintained with optimal working conditions for the machinery contained within.

How to Choose the Good Dental Compressor

Some units are portable, allowing practitioners to move them around as needed. Others are mounted in a practice. For hygiene reasons, the dental air compressor is typically attached to short tubing. Dentists may place a unit between two treatment rooms, for example, providing access from either side while leaving the tubes short to reduce the risk of breeding bacteria. The best option for a facility can depend on the number of patients it sees and the kinds of procedures it performs with the use of compressed air.

A small compressor has the advantage of being lightweight, quieter and cheaper. However, if asked to work beyond its capacity, it will overheat and cut out. It is often suggested that if the practice intends to perform restorative work it is best to have an oilless compressor, to prevent oil droplets in the airline contaminating the restorative material.

The temperature that surrounds an air compressor is integral to the quality of the machine’s performance. If the air that surrounds the compressor is hotter than normal due to rising outdoor temperatures, it can affect the performance of pneumatic tools and machines. Therefore, it’s crucial to ensure that the air compressor itself maintains consistent temperatures throughout the year, including those months where outdoor temperatures top 80 degrees.

In recent years, increased awareness over the detriments of air contamination has spurred the development of advanced filtering systems for compressed air. The trend has gained steam in tandem with the move towards conservation and energy efficiency, both of which have been aided by the widespread adoption of pneumatic tools and machinery.

In order to prevent an air compressor from getting hotter during summer, the coolers must be cleaned each year just as temperatures begin to rise. If the coolers are clogged, it could impede their ability to keep your compressed air system at desired levels. To prevent this from happening, perform the following actions several weeks in advance of each summer:

Inspect the coolers for traces of dirt, gunk or misty residue.
Clean away any dirt deposits present on the coolers.

If the air compressor gets overheated, the impact could be troublesome for the compressor itself, as well as for any attached pneumatic tools and machinery. If a compressor is used to power air blowers, for example, the quality of air that reaches the end point could be ill–suited to the task at hand when the system is overheated.

Both new and used dental air compressor options are available. Some manufacturers offer refurbished units which have been carefully serviced before sale. These units are similar to those that are new, but have a lower price because they’ve been gently used. It may also be possible to rent a unit, which can help defray the startup costs for a dental practice. The equipment needed to start offering services to patients can be substantial, making it expensive to start a new business.

The Improve of Dental Vacuum Systems

Whenever operating a dental air compressor or any other noisy equipment — lawnmowers, food blenders, vacuums, etc. — it’s wise to wear earplugs to protect your hearing. Even though you might feel as though your ears are tough enough to bear the volume, ears are like eyes. In the same way that vision diminishes somewhat over the course of life, so too does hearing. As with eyesight, the weakening of the ear drum can be accelerated through constant abuse.

The dentist with a wet vacuum system is hit with a double water bill, once on the way in, and again on the way out. Since, a dry vacuum system does not require the water that wet systems do, there is a very positive financial impact (in addition to the environmental one) in switching to the newer technology when the old system needs to be replaced.

The recent introduction of various dry vacuum systems eliminates these concerns and provides excellent clinical vacuuming power. The concerns of retro-fitting a new unit center on practicality and cost. The replacement dry system should be no larger than the existing wet one, and should preferably provide more suction capacity for the practice. Other parameters include reduction of noise and the drainage requirements; most wet system traps must be drained on a regular basis, a task usually allotted (due to its popularity) to the staff member with the least seniority.

Both systems work well for dentistry. However, a new wet vac creates up to 15″ Hg suction pressure while a new dry vac (some but not all) creates up to 25″ Hg. This provides the power and performance that the dentist expects from the vacuum system. This is probably the single most important factor to consider when selecting a new vacuum and should be carefully researched. (Some dry vacs produce only 8″ Hg suction pressure.)

Many of the currently available dry vacs utilize oil in their motors( micro motor ) for lubrication and cooling, much like a car. The “oil” dry vacs therefore exhaust oil vapors which pollute their immediate environment. The also require regular oil maintenance. The newer dental dry vacs can create powerful vacuum without using oil. Carbon fiber vanes eliminate the need for oil in the process. There are no oil levels to check, no oil to add, no oil to change, and most importantly, no oil in the exhaust that can be harmful to people and animals, and can cause severe damage to a roof or building exterior.

Some “dry” vacuum systems offer a unique air-water separator. There is a compact plastic air-water separator that collects liquids and drains them efficiently into a small 20 gallon pail. Working with a gravity drain design, the tank drains every time the pump is shut off. The smaller tank drains more frequently, reducing the odors that are often synonymous with dental evacuation systems. This also eliminates the need for cleaning (something that every staff member will appreciate). Should the tank require draining during the day, the cycle takes approximately 6 minutes.

How to Do the Sterilization

Steam dental autoclaves are the most commonly used type of heat sterilizer in dental practices. Two types of processes employ steam under pressure. The difference between the two is the manner in which the machine evacuates the air from the sterilization chamber and then introduces the steam.

Gravity displacement sterilizers rely on the forces of gravity to force air out of the chamber through air escape vents. The steam entering the chamber from the water reservoir displaces the air as it leaves the chamber. The combination of pressurization of the chamber, steam and a high temperature for a prolonged period has the ability to kill virtually all microorganisms. This is the most common type of autoclave found in dental offices in the United States. A typical cycle for wrapped instruments includes heat-up and pressurization time, followed by a 15-to-30-minute cycle during which sterilization is taking place (121°C at 15 psi). The sterilization cycle time decreases as the temperature is increased.

It is important to use cycle times and temperatures described in the owner’s manual, and never to interrupt the sterilization cycle to remove or add items, or for any other reason. Interruption of the cycle will result in instruments that are not sterile and therefore not safe for use on patients. After the sterilization cycle, the sterilizer must depressurize and the packs remain in the sterilizer for drying. The drying phase may take anywhere from 20-45 minutes. The unit must only be opened after completion of the drying cycle. Upon removal from the sterilizer, sterile packs must be stored in a clean, dry area. Packs that become wet, torn, contaminated, or otherwise compromised require resterilization.

Dry-heat sterilization employs high temperatures for extended periods to achieve sterilization of dental equipment. The method of heat circulation in dry-heat sterilizers is usually convection, which helps to ensure that the heat circulates throughout the sterilization chamber during the process. Mechanical convection is more effective; the sterilizer contains a fan or blower that continually circulates the heated air to maintain a uniform temperature throughout the chamber. Most commercially available dry-heat sterilizers on the market today are of this type.

The higher temperature of a dry-heat sterilizer means that paper will scorch and plastic will melt. Specialized packaging material is available for dry-heat sterilizers. Most handpieces will not tolerate the higher temperatures of a dry-heat sterilizer. Mechanically driven handpieces that contain turbines and bearings are susceptible to damage at higher temperatures. The manufacturer’s instructions should be checked for compatibility of instruments, devices, and materials with the unit and the handpiece manufacturer’s instructions should be followed for preparation of the handpiece prior to sterilization and for sterilization itself.