Dental health has improved dramatically with falling rates of tooth decay and attention has now shifted to the needs of an ageing population, with an increased emphasis upon aesthetics – that is, having a full set of sparkling white teeth. Therefore, dental technologists spend much of their time in the lab creating cosmetic dental prostheses such as crowns and implants. This work creates dust and chemical fumes. Without proper protection, exposure to these may risk the health of the dental technologist( dental lab equipment ).
Research has shown us that the dust from the types of materials that are used in dental technology contain between 54-70 per cent of respirable particles (that is, particles of less than 5 microns in size that enter the lungs). A particular concern is the silica content of this dust, which can reach 30 per cent and may exceed maximum recommended levels during the sandblasting and grinding processes. Another is exposure to dusts from heavy metals like the cobalt-chromium-molybdenum alloys. Both exposures may lead to a lung condition known as pneumoconiosis, of which several cases have been reported as being linked to dental technology.
There have also been a number of cases of silicosis, a well-known and very serious occupational lung disease that is cause by inhaling respirable crystalline silica dust. These have been highlighted in the United States Center for Disease Control’s publication Morbidity and Mortality Weekly Reports (MMWR). Traditionally, silicosis is associated with the mining, quarrying and ceramics industries. However, it appears that materials and processes used in dental laboratories put those who work there at risk of the condition. According to MMWR, occupational disease surveillance in five states found nine cases of silicosis among dental technologists. The case reports are revealing of the importance of protection against dust in the dental lab – as follows:
Case 1 – worked 46 years in a dental lab, exposed to dust, cobalt and chemicals and never wore a respirator. Died of respiratory failure, pathology report showed silicosis.
Case 3 – died of renal failure, pathology showed silicosis. Worked for 28 years in dental labs and never wore a respirator or used an air cleaner for dental technicians, while exposed to various dusts when carrying out sandblasting processes.
In general, the smaller the particle the more likely it is to damage health. Of particular concern are the ultra-fine particles (UFPs) which have a size in the nano range – that is less than 0.1 microns, or 100 nanometres. A recent study analysed the size range of particle which dental technologists may come into contact with during the course of their work. A number of blocks of composites used in dental prostheses were ground and the dust thus generated analysed. All of the composites released a certain amount of respirable dust.