The Use of Air Polishing in Dental Implants

In most currently available units, the water stream emits through a separate nozzle that may be concentric to that of the powderladen air stream nozzle. The resulting buildup of crystalline anhydrous sodium bicarbonate deposits in the lumen of the air/powder nozzle results in clogging.

More recent technology produces a slurry by introducing the water stream into the powder-laden air stream, within the spray head at a critical moment, to produce a fully homogeneous stream that is emitted from a single nozzle. This stream technology configuration has not only been shown to prevent nozzle clogging by preventing the buildup of deposits, but also results in a much more efficient cleaning action because the slurry is formed prior to emission. Air polishing devices( like dental air polisher ) were originally designed to be standalone tabletop units. They have been considered to be the equipment of choice for the hygiene department, sometimes being combined with ultrasonic scaling devices.

Dental root form implants are manufactured from a highgrade titanium alloy, the surface of which consists of a micro layer of titanium oxide. The implant surface can also be treated by plasma spraying, acid etching, sandblasting or coated with HA. The removal of plaque and calculus deposits from these implant surfaces with Dental Instruments designed originally for cleaning natural tooth surfaces can result in major alterations to the delicate titanium oxide layer. Altering the surface topography by roughening the surface may enhance calculus and bacterial plaque accumulation.

Resulting scratches, cuts or gouges may also reduce the corrosion resistancy of titanium, and corrosion and mechanical debris can accumulate in the surrounding tissue. The aim of procedures for debriding dental implants by dental implant machine should be to remove microbial and other soft deposits, without altering the implant surface, and thereby adversely affect biocompatibility. Increased surface roughness can lead to an increase in bacterial accumulation and resultant soft tissue inflammation. Because of the critical nature of the implant/soft tissue relationship, metal ultrasonic scaler tips, hand scalers or curettes should not be used as they have been shown to significantly alter the titanium surface.

Current methods for professional cleaning of implant or titanium transmucosal elements include the set of plastic ultrasonic tips or hand instruments followed by the prophy cup polishing method or various types of floss and buffing strips. The design of the permanently cemented super structure often does not allow adequate access for the prophy cup, especially in interproximal areas, and plastic instruments are not very efficient for the removal of plaque or mineralized deposits. In addition, the prophy cup and paste method may leave residual paste at the implant/soft tissue interface area.

The Benefits of Using Dental Intraoral Camera

The intraoral camera makes going to the dentist easier for both the patient and the dental health provider. These odd-looking tools may cause patients some anxiety—we understand that. The intraoral camera, however, is nothing to be nervous about. This tool will cause you no pain, and you may even have fun during your exam.

Your dentist understands symptoms and conditions thoroughly, but it’s often difficult to explain precisely what is happening in a patient’s mouth using just a mouth mirror, which is small and hard to see, or an x-ray image by dental x-ray machine, which takes time to print and doesn’t display images clearly. When your dentist uses an intraoral camera during your examination, however, you’re seeing exactly what he or she sees right then. Dentists can display clear, colorful images, allowing them to point out any issues and discuss them with you immediately. You’ll certainly learn a lot about your mouth!

Cameras can also be used to take clear visual records for patient files, and to generate material which can be used in consultations and discussions with other dental providers. For example, a general dentist might use an intraoral camera to take images of a tooth or area of the jaw which requires oral surgery so that a maxillofacial surgeon can examine the information before he or she meets the patient to get an idea of the kind of surgery which might be required.

With LED lighting, a head that rotates from 0 to 90 degrees, and powerful magnifying capabilities (some cameras can zoom in up to 100x), your dentist can examine your mouth in extreme detail. This means he or she can make diagnoses more accurately. The office can attach these photos to your health record to make tracking any changes simple.

Images taken by an intraoral camera can also be reviewed later, which can be useful for a dentist who feels a nagging suspicion that something is not quite right in the mouth of a patient. The intraoral camera can also be used to document procedures for legal and educational reasons, and to create projections of a patient’s mouth which can be used in medical schools for the purpose of educating future dentists about various issues which pertain to oral health.

More Information about Dental Amalgam Separators

Elemental mercury is the primary component of dental amalgam. Mercury is a naturally occurring metal in the environment and can exist in liquid, gas or solid form when combined with other metals. Everyone is exposed to mercury through air, drinking water, soil and food. The concern is how much mercury exposure is too much before becoming mercury poisoning, and are mercury levels increasing as a result of interactions with other elements in the environment?

Mercury is released into the environment whenever a dentist removes an old amalgam filling from a cavity, or when excess amalgam is removed during the placement of a new filling. There is a concern that low levels of vapor can be inhaled and absorbed by the lungs even years after an amalgam filling is placed in a patient’s mouth, potentially causing long-term damage to the brain and kidneys. Due to the lack of scientific data surrounding this concern, little has been done over the years to limit the use and/or disposal of dental amalgam( dental supplies Australia ).

In 2009, the FDA issued a final rule that classified dental amalgam as a Class II device accompanied by a document that designates special controls for dental amalgam. The Agency for Toxic Substances and Disease Registry (ATSDR) and the EPA have established mercury exposure levels aimed at protecting the most mercury-sensitive populations from the adverse effects of mercury vapor, namely pregnant women, developing fetuses and all children under 6 years old.

Dental offices that place or remove amalgam fillings are required to install and properly maintain an amalgam separator. Depending on the brand, a separator can be purchased from virtually any supply vendor or purchased directly from the manufacturer. Whatever separator is purchased; it is important that the system is promptly installed in order to comply with the new regulations.

The regulations do not specify a minimum amount of time needed before replacing a used filter/canister, but the regulations do state and mandate that the manufacturer guidelines for replacement be followed. Since each amalgam separator is required to conduct testing for the ISO certification based on a 12-month replacement maximum, most amalgam separators are required to be replaced every 12 months or once the canister is full. This not only ensures that the separator is functioning as certified, but also to prevent the separator from moving into bypass mode, which would allow the wastewater to flow unrestricted or filtered directly into the separator. The EPA recommends that an amalgam separator should be monitored monthly to ensure the canister is replaced per the manufacturer’s instructions for use, and that a backup canister is kept on site to ensure proper replacement is conducted at the appropriate time. ( dental laboratory equipment )

Most separators are compatible with both large- and small- capacity dental offices and can be used with dry vacuum or wet vacuum systems. That being said, it is best to check with the manufacturer or distributor to make sure the right amalgam separator system is purchased.